Axes and planes of symmetry of an an isotropic elastic material
Rubriek: Textual/Printed/Reference Materials - Boek
Prijs: € 52.99
Verzending: 2 - 3 weken
Inhoudsopgave:
Omschrijving:
This book deals with necessary and sufficient conditions for the existence of axes and planes of symmetry. We discuss matrix representation of an elasticity tensor belonging to a trigonal, a tetragonal or a hexagonal material. The planes of symmetry of an anisotropic elastic material (if they exist) can be found by the Cowin-Mehrabadi theorem (1987) and the modified Cowin-Mehrabadi theorem proved by Ting (1996). Using the Cowin-Mehrabadi formalism Ahmad (2010) proved the result that an anisotropic material possesses a plane of symmetry if and only if the matrix associated with the material commutes with the matrix representing the elasticity tensor. A necessary and sufficient condition to determine an axis of symmetry of an anisotropic elastic material is given by Ahmad (2010). We review the Cowin-Mehrabadi theorem for an axis of symmetry and develop a straightforward way to find the matrix representation for a trigonal, a tetragonal or a hexagonal material.
- 1 Bekijk alle specificaties
Beste alternatieven voor u.
Product specificaties:
Oorspronkelijke releasedatum: 28 december 2011
Aantal pagina's: 100
Hoofdauteur: Siddra Rana
Hoofduitgeverij: Lap Lambert Academic Publishing
Product breedte: 152 mm
Product hoogte: 6 mm
Product lengte: 229 mm
Verpakking breedte: 152 mm
Verpakking hoogte: 6 mm
Verpakking lengte: 229 mm
Verpakkingsgewicht: 159 g
EAN: 9783847326779
|