Maximum principles and applications
Rubriek: Textual/Printed/Reference Materials - Boek
Prijs: € 47.99
Verzending: Uiterlijk 31 januari in huis
Inhoudsopgave:
Omschrijving:
We study maximum principles for a class of linear, degenerate elliptic differential operators of the second order. The Weak and Strong Maximum Principles are shown to hold for this class of operators in bounded domains, as well as a Hopf type lemma, under suitable hypotheses on the principal part and on the degeneracy set of the operator. We prove a Poincare inequality, which then allows to define the functional setting where to study weak solutions for equations and inequalities involving this class of operators. A good example of such an operator is the Grushin operator, to which we devote particular attention. As an application of these tools in the degenerate elliptic setting, we prove a partial symmetry result for classical solutions of semilinear problems on bounded, symmetric and suitably convex domains and a nonexistence result for classical solutions of semilinear equations with subcritical growth defined on the whole space. We use here the method of moving planes, implemented just in the directions parallel to the degeneracy set of the Grushin operator."
- 1 Bekijk alle specificaties
Beste alternatieven voor u.
Product specificaties:
Oorspronkelijke releasedatum: 29 juli 2010
Aantal pagina's: 92
Hoofdauteur: Dario Daniele Monticelli
Hoofduitgeverij: Lap Lambert Academic Publishing
Product breedte: 152 mm
Product hoogte: 6 mm
Product lengte: 229 mm
Verpakking breedte: 152 mm
Verpakking hoogte: 6 mm
Verpakking lengte: 229 mm
Verpakkingsgewicht: 145 g
EAN: 9783838389301
|