Assessing and improving prediction and classification
Rubriek: Textual/Printed/Reference Materials - Boek
Prijs: € 72.99
Verzending: Uiterlijk 28 januari in huis
Inhoudsopgave:
Omschrijving:
Carry out practical, real-life assessments of the performance of prediction and classification models written in C++. This book discusses techniques for improving the performance of such models by intelligent resampling of training/testing data, combining multiple models into sophisticated committees, and making use of exogenous information to dynamically choose modeling methodologies. Rigorous statistical techniques for computing confidence in predictions and decisions receive extensive treatment. Finally, the last part of the book is devoted to the use of information theory in evaluating and selecting useful predictors. Special attention is paid to Schreiber's Information Transfer, a recent generalization of Grainger Causality. Well commented C++ code is given for every algorithm and technique. You will: Discover the hidden pitfalls that lurk in the model development process Work withsome of the most powerful model enhancement algorithms that have emerged recently Effectively use and incorporate the C++ code in your own data analysis projects Combine classification models to enhance your projects
- 1 Bekijk alle specificaties
Beste alternatieven voor u.
Product specificaties:
Taal: en
Bindwijze: Paperback
Oorspronkelijke releasedatum: 20 december 2017
Aantal pagina's: 517
Illustraties: Nee
Hoofdauteur: Timothy Masters
Hoofduitgeverij: Apress
Editie: 1
Extra groot lettertype: Nee
Product breedte: 178 mm
Product lengte: 254 mm
Studieboek: Ja
Verpakking breedte: 178 mm
Verpakking hoogte: 34 mm
Verpakking lengte: 254 mm
Verpakkingsgewicht: 1016 g
EAN: 9781484233351
|