Rbizo.com

Probabilistic forecasting and bayesian data assimilation


Foto: Probabilistic forecasting and bayesian data assimilation
Rubriek: Textual/Printed/Reference Materials - Boek
Prijs: 46.99
Rating: 0/5
Verzending:
Direct beschikbaar


Inhoudsopgave:

Omschrijving:

In this book the authors describe the principles and methods behind probabilistic forecasting and Bayesian data assimilation. Instead of focusing on particular application areas, the authors adopt a general dynamical systems approach, with a profusion of low-dimensional, discrete-time numerical examples designed to build intuition about the subject. Part I explains the mathematical framework of ensemble-based probabilistic forecasting and uncertainty quantification. Part II is devoted to Bayesian filtering algorithms, from classical data assimilation algorithms such as the Kalman filter, variational techniques, and sequential Monte Carlo methods, through to more recent developments such as the ensemble Kalman filter and ensemble transform filters. The McKean approach to sequential filtering in combination with coupling of measures serves as a unifying mathematical framework throughout Part II. Assuming only some basic familiarity with probability, this book is an ideal introduction for graduate students in applied mathematics, computer science, engineering, geoscience and other emerging application areas.





Beste alternatieven voor u.




Product specificaties:

Taal: en

Bindwijze: E-book

Oorspronkelijke releasedatum: 14 mei 2015

Ebook Formaat: Adobe ePub

Illustraties: Nee

Hoofdauteur: Sebastian Reich

Tweede Auteur: Colin Cotter

Hoofduitgeverij: Cambridge University Press

Lees dit ebook op: Android (smartphone en tablet)

Lees dit ebook op: Kobo e-reader

Lees dit ebook op: Desktop (Mac en Windows)

Lees dit ebook op: iOS (smartphone en tablet)

Lees dit ebook op: Windows (smartphone en tablet)

Studieboek: Ja

EAN: 9781316288788