Elements in quantitative and computational methods for the social sciences modern dimension reduction
Rubriek: Textual/Printed/Reference Materials - Boek
Prijs: € 23
Verzending: 2 - 3 weken
Inhoudsopgave:
Omschrijving:
Data are not only ubiquitous in society, but are increasingly complex both in size and dimensionality. Dimension reduction offers researchers and scholars the ability to make such complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques along with hundreds of lines of R code, to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Launching from the earliest dimension reduction technique principal components analysis and using real social science data, I introduce and walk readers through application of the following techniques: locally linear embedding, t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection, self-organizing maps, and deep autoencoders. The result is a well-stocked toolbox of unsupervised algorithms for tackling the complexities of high dimensional data so common in modern society. All code is publicly accessible on Github.
- 1 Bekijk alle specificaties
Beste alternatieven voor u.
Product specificaties:
Taal: en
Bindwijze: Paperback
Oorspronkelijke releasedatum: 05 augustus 2021
Aantal pagina's: 75
Hoofdauteur: Philip D. Waggoner
Hoofduitgeverij: Cambridge University Press
Product breedte: 152 mm
Product hoogte: 5 mm
Product lengte: 229 mm
Studieboek: Nee
Verpakking breedte: 152 mm
Verpakking hoogte: 5 mm
Verpakking lengte: 229 mm
Verpakkingsgewicht: 160 g
EAN: 9781108986892
|