The Guide to Understanding Impedance Spectroscopy and Its Applications
Compiling the cumulative research of the last two decades on theoretical considerations and practical applications of impedance spectroscopy, this book covers all of the topics that will help readers quickly determine whether this technique is an appropriate method of analysis for their own research problems, and how to apply it. This includes understanding how to correctly make impedance measurements, interpret the results, compare these results with previously published information, and use appropriate mathematical formulas to verify data accuracy.
Unique to this monograph is an emphasis on practical applications of impedance spectroscopy. Impedance Spectroscopy is developed around a representative catalogue of the most commonly encountered impedance data examples for a large variety of established, emerging, and non-conventional experimental and applied systems. The book also presents theoretical considerations for dealing with impedance data modeling, equivalent circuits, relevant complex domain mathematical equations, and physical and chemical interpretation of the experimental results for many problems encountered in research and industrial settings. A review of impedance instrumentation, selection of best measurement methods for particular systems, and analysis of potential sources of error is also included. Many helpful references to scientific literature for further information on particular topics and current research are offered, along with an overview of impedance spectroscopy modifications and related techniques.
Impedance Spectroscopy is primarily addressed to industrial scientists, engineers, researchers, and graduate students working in electrochemistry, chemical engineering, biomedical sciences, advanced materials, renewable energy, sensors, electronics, and other related fields.
Unique features of the book include theoretical considerations for dealing with modeling, equivalent circuits, and equations in the complex domain, review of impedance instrumentation, best measurement methods for particular systems and alerts to potential sources of errors, equations and circuit diagrams for the most widely used impedance models and applications, figures depicting impedance spectra of typical materials and devices, extensive references to the scientific literature for more information on particular topics and current research, and a review of related techniques and impedance spectroscopy modifications.